Phytoplankton and microbial abundance and bloom dynamics in the upwelling shadow of Monterey Bay , California , from 2006 to 2013
نویسندگان
چکیده
Wind-driven upwelling variability and local topography cause an upwelling shadow in the northern region of Monterey Bay, California, to persist seasonally. The present study applied partial least squares regression to a 7-yr time series collected within this retentive feature for the purpose of evaluating the environmental controls on total autotrophic phytoplankton (as chlorophyll a) and picoplankton (Synechococcus spp., picoeukaryotes, and heterotrophic bacteria) abundance. A bloom threshold was defined and applied to all biological groups to evaluate seasonal and inter-annual abundance patterns. Microbial and phytoplankton abundances in the upwelling shadow were positively associated with warmer, nutrient-depleted water. Consistent with these results, two-thirds of phytoplankton blooms occurred in October−November, when surface temperatures were warm and ammonium concentrations were greatest. These blooms were predominantly composed of dinoflagellates, 64% of which were known toxin-producing species. Although the overall relationship of phytoplankton to river discharge rates was negative, phytoplankton blooms in 2006, 2007, 2010, and 2012 followed early rainfall events, which flush nitrogen from the surrounding farms into the bay. Despite the fact that the regional measure of upwelling, the Bakun upwelling index, is seasonally low in the autumn, pulses of cold, nutrientreplete water were advected into the upwelling shadow, additionally supporting late-year blooms. Physical and chemical processes occurring over multiple time scales controlled bloom dynamics in the upwelling shadow of Monterey Bay.
منابع مشابه
Observed and modeled bio‐optical, bioluminescent, and physical properties during a coastal upwelling event in Monterey Bay, California
[1] During spring and summer time, coastal upwelling influences circulation and ecosystem dynamics of the Monterey Bay, California, which is recognized as a National Marine Sanctuary. Observations of physical, bio‐optical properties (including bioluminescence) together with results from dynamical biochemical and bioluminescence models are used to interpret the development of the upwelling event...
متن کاملCan vertical migrations of dinoflagellates explain observed bioluminescence patterns during an upwelling event in Monterey Bay, California?
[1] Extensive AUVs surveys showed that during the development of upwelling, bioluminescent dinoflagellates from the northern part of the Monterey Bay, California (called the upwelling shadow area), were able to avoid advection by southward flowing currents along the entrance to the Bay, while non-bioluminescent phytoplankton were advected by currents. It is known that vertical swimming of dinof...
متن کاملPhytoplankton growth and microzooplankton grazing in the Homa Lagoon (İzmir Bay, Turkey)
Phytoplankton growth and microzooplankton grazing were investigated at one station in the Homa Lagoon from February to January in 2006-2007. Our results showed significant seasonal variations in phytoplankton dynamics. Microzooplankton was mainly composed of dinoflagellates and tintinnid ciliates and nauplii. Microzooplankton grazing increased with increasing of temperature. Grazing ra...
متن کاملPhytoplankton growth and microzooplankton grazing in the Homa Lagoon (İzmir Bay, Turkey)
Phytoplankton growth and microzooplankton grazing were investigated at one station in the Homa Lagoon from February to January in 2006-2007. Our results showed significant seasonal variations in phytoplankton dynamics. Microzooplankton was mainly composed of dinoflagellates and tintinnid ciliates and nauplii. Microzooplankton grazing increased with increasing of temperature. Grazing rate was ma...
متن کاملApplication of the Hyperspectral Imager for the Coastal Ocean to Phytoplankton Ecology Studies in Monterey Bay, CA, USA
As a demonstrator for technologies for the next generation of ocean color sensors, the Hyperspectral Imager for the Coastal Ocean (HICO) provides enhanced spatial and spectral resolution that is required to understand optically complex aquatic environments. In this study we apply HICO, along with satellite remote sensing and in situ observations, to studies of phytoplankton ecology in a dynamic...
متن کامل